Three-Dimensional Stochastic Characterization of Shale SEM Images

نویسندگان

  • Pejman Tahmasebi
  • Farzam Javadpour
  • Muhammad Sahimi
چکیده

Complexity in shale-gas reservoirs lies in the presence of multiscale networks of pores that vary from nanometer to micrometer scale. Scanning electron microscope (SEM) and atomic force microscope imaging are promising tools for a better understanding of such complex microstructures. Obtaining 3D shale images using focused ion beam-SEM for accurate reservoir forecasting and petrophysical assessment is not, however, currently economically feasible. On the other hand, high-quality 2D shale images are widely available. In this paper, a new method based on higher-order statistics of a porous medium (as opposed to the traditional two-point statistics) is proposed in which a single 2D image of a shale sample is used to reconstruct stochastically equiprobable 3D models of the sample. Because some pores may remain undetected in the SEM images, data from other sources, such as the pore-size distribution obtained from nitrogen adsorption data, are integrated with the overall pore network using an object-based technique. The method benefits from a recent algorithm, the crosscorrelation-based simulation, by which high-quality, unconditional/conditional realizations of a given sample porous medium are produced. To improve the ultimate 3D model, a novel iterative algorithm is proposed that refines the quality of the realizations significantly. Furthermore, a new histogrammatching, which deals with multimodal continuous properties in shale samples, is also proposed. Finally, quantitative comparison is made by computing various statistical and petrophysical properties for the original samples, as well as the reconstructed model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPE 144050 Submicron-Pore Characterization of Shale Gas Plays

Gas storage and flow behavior in the shale gas rocks are complex and hard to identify by conventional core analysis. This study integrates clustering analysis techniques from material science, petrophysics, and petrology to characterize North American shale gas samples from Utica, Haynesville, and Fayetteville shale gas plays. High pressure (up to 60,000 psi) mercury porosimetry analysis (MICP)...

متن کامل

Rock physics characterization of shale reservoirs: a case study

Unconventional resources are typically very complex to model, and the production from this type of reservoirs is influenced by such complexity in their microstructure. This microstructure complexity is normally reflected in their geophysical response, and makes them more difficult to interpret. Rock physics play an important role to resolve such complexity by integrating different subsurface di...

متن کامل

Characterization of Poosti Cheese, a Traditional Raw Sheep Cheese during Ripening: Physicochemical, Microbial and Micro-structural Aspects

Background and Objectives: This study is the first research on the physiochemical characteristics, microbial population and microstructure of Poosti cheese over 90-days of ripening. The main difference between Poosti cheese and other types of traditional cheese is the skin, which is used for its storage. Materials and Methods: Physicochemical characteristics including moisture, salt, pH, acidi...

متن کامل

Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock

Spatial data captured with sensors of different resolution would provide a maximum degree of information if the data were to be merged into a single image representing all scales. We develop a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated b...

متن کامل

Multiscale and multiresolution modeling of shales and their flow and morphological properties

The need for more accessible energy resources makes shale formations increasingly important. Characterization of such low-permeability formations is complicated, due to the presence of multiscale features, and defies conventional methods. High-quality 3D imaging may be an ultimate solution for revealing the complexities of such porous media, but acquiring them is costly and time consuming. High...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015